3.439 \(\int \frac{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx\)

Optimal. Leaf size=207 \[ \frac{\left (c d^2-a e^2\right ) \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{5/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}-\frac{1}{4} \left (\frac{a}{c d}+\frac{3 d}{e^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \]

[Out]

-((a/(c*d) + (3*d)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/4 + (a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(2*c*d*e*(d + e*x)) + ((c*d^2 - a*e^2)*(3
*c*d^2 + a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(3/2)*d^(3/2)*e^(5/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.485473, antiderivative size = 207, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105 \[ \frac{\left (c d^2-a e^2\right ) \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 c^{3/2} d^{3/2} e^{5/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 c d e (d+e x)}-\frac{1}{4} \left (\frac{a}{c d}+\frac{3 d}{e^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \]

Antiderivative was successfully verified.

[In]  Int[(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

-((a/(c*d) + (3*d)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/4 + (a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(2*c*d*e*(d + e*x)) + ((c*d^2 - a*e^2)*(3
*c*d^2 + a*e^2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*c^(3/2)*d^(3/2)*e^(5/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 44.3452, size = 189, normalized size = 0.91 \[ - \left (\frac{a}{4 c d} + \frac{3 d}{4 e^{2}}\right ) \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} + \frac{\left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}{2 c d e \left (d + e x\right )} - \frac{\left (a e^{2} - c d^{2}\right ) \left (a e^{2} + 3 c d^{2}\right ) \operatorname{atanh}{\left (\frac{a e^{2} + c d^{2} + 2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{8 c^{\frac{3}{2}} d^{\frac{3}{2}} e^{\frac{5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

-(a/(4*c*d) + 3*d/(4*e**2))*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)) + (a*
d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(3/2)/(2*c*d*e*(d + e*x)) - (a*e**2 - c
*d**2)*(a*e**2 + 3*c*d**2)*atanh((a*e**2 + c*d**2 + 2*c*d*e*x)/(2*sqrt(c)*sqrt(d
)*sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))))/(8*c**(3/2)*d**(3/2)*
e**(5/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.382126, size = 159, normalized size = 0.77 \[ \frac{1}{8} \sqrt{(d+e x) (a e+c d x)} \left (\frac{\left (c d^2-a e^2\right ) \left (a e^2+3 c d^2\right ) \log \left (2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e^2+c d (d+2 e x)\right )}{c^{3/2} d^{3/2} e^{5/2} \sqrt{d+e x} \sqrt{a e+c d x}}+\frac{2 a}{c d}-\frac{6 d}{e^2}+\frac{4 x}{e}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[(x*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(d + e*x),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((2*a)/(c*d) - (6*d)/e^2 + (4*x)/e + ((c*d^2 - a*
e^2)*(3*c*d^2 + a*e^2)*Log[a*e^2 + 2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*S
qrt[d + e*x] + c*d*(d + 2*e*x)])/(c^(3/2)*d^(3/2)*e^(5/2)*Sqrt[a*e + c*d*x]*Sqrt
[d + e*x])))/8

_______________________________________________________________________________________

Maple [B]  time = 0.013, size = 516, normalized size = 2.5 \[{\frac{x}{2\,e}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{a}{4\,cd}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{d}{4\,{e}^{2}}\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{{e}^{2}{a}^{2}}{8\,cd}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{cde}}}}+{\frac{ad}{4}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{cde}}}}-{\frac{c{d}^{3}}{8\,{e}^{2}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{ade+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{cde}}}}-{\frac{d}{{e}^{2}}\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) }}-{\frac{ad}{2}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}}+{\frac{c{d}^{3}}{2\,{e}^{2}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ( x+{\frac{d}{e}} \right ) cde \right ){\frac{1}{\sqrt{cde}}}}+\sqrt{cde \left ( x+{\frac{d}{e}} \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ( x+{\frac{d}{e}} \right ) } \right ){\frac{1}{\sqrt{cde}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d),x)

[Out]

1/2/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+1/4/c/d*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(1/2)*a+1/4/e^2*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/8*e^2/c/d*
ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)
^(1/2))/(c*d*e)^(1/2)*a^2+1/4*d*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(
a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)*a-1/8/e^2*c*d^3*ln((1/2*a*
e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c
*d*e)^(1/2)-d/e^2*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/2*d*ln((1/2*a*
e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e
))^(1/2))/(c*d*e)^(1/2)*a+1/2*d^3/e^2*ln((1/2*a*e^2-1/2*c*d^2+(x+d/e)*c*d*e)/(c*
d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)*c

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*x/(e*x + d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.307921, size = 1, normalized size = 0. \[ \left [\frac{4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x - 3 \, c d^{2} + a e^{2}\right )} \sqrt{c d e} -{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \log \left (-4 \,{\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e}\right )}{16 \, \sqrt{c d e} c d e^{2}}, \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x - 3 \, c d^{2} + a e^{2}\right )} \sqrt{-c d e} +{\left (3 \, c^{2} d^{4} - 2 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \arctan \left (\frac{{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d e}\right )}{8 \, \sqrt{-c d e} c d e^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*x/(e*x + d),x, algorithm="fricas")

[Out]

[1/16*(4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x - 3*c*d^2 + a*e^
2)*sqrt(c*d*e) - (3*c^2*d^4 - 2*a*c*d^2*e^2 - a^2*e^4)*log(-4*(2*c^2*d^2*e^2*x +
 c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) + (8*c^2*d^2
*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x)*sqrt
(c*d*e)))/(sqrt(c*d*e)*c*d*e^2), 1/8*(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x)*(2*c*d*e*x - 3*c*d^2 + a*e^2)*sqrt(-c*d*e) + (3*c^2*d^4 - 2*a*c*d^2*e^2 - a^
2*e^4)*arctan(1/2*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(sqrt(c*d*e*x^2 + a*d
*e + (c*d^2 + a*e^2)*x)*c*d*e)))/(sqrt(-c*d*e)*c*d*e^2)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x \sqrt{\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d),x)

[Out]

Integral(x*sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x), x)

_______________________________________________________________________________________

GIAC/XCAS [F(-2)]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*x/(e*x + d),x, algorithm="giac")

[Out]

Exception raised: TypeError